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Abstract
By making the connection between four-dimensional lattice Green functions
(LGFs) and Picard–Fuchs ordinary differential equations of Calabi–Yau
manifolds, we have given explicit forms for the coefficients of the four-
dimensional LGFs on the simple-cubic and body-centred cubic lattices, in
terms of finite sums of products of binomial coefficients, and have shown that
the corresponding four-dimensional face-centred cubic LGF satisfies a fourth-
order ODE of degree 7, which we have found but not solved. The fact that
the Picard–Fuchs equations that appear here are similar to those that appear in
string theory perhaps makes the first connection between these two apparently
unrelated topics.

PACS numbers: 02.30.Hq, 05.50.+q, 05.40.Fb

1. Introduction

Lattice Green functions (LGFs) are remarkable integrals that arise in many problems of solid-
state physics, including ferromagnetism, phonon spectra and lattice vibrations. The study
of random walks, which is a central problem in probability theory, also gives rise to lattice
Green functions which, along with certain integrals of Ramanujan, Onsager and Selberg, are
amongst the most remarkable that appear in mathematical physics. Higher dimensional LGFs,
for lattices of dimensionality greater than 3, have been sought since the 1930s [4]. We show
here that LGFs satisfy the Picard–Fuchs ordinary differential equations (ODEs) of Calabi–Yau
manifolds, which are ubiquitous in string theory [5, 6]. This allows us to compute LGFs in
D � 4 dimensions and to make possible connections between two subjects that were hitherto
unrelated.

The Picard–Fuchs equations of Calabi–Yau manifolds that appear here also appear in
string theory [5, 6]. This connection appears to be new but is analogous to that between plane
partitions and topological strings [6, 7]. The latter connection continues to be mathematically
fruitful, and we hope that the connection made in this communication will be similarly fruitful.
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1.1. Lattice walk structure functions

Consider a random walk on a D-dimensional lattice with i.i.d steps [4]. Let x be the position
vector of a point on the lattice1 and p[x′ − x] be the probability of a single-step transition
from x to x′. The discrete Fourier transform of p[x] is the lattice walk structure function
λ[k] = ∑

x eix·kp[x]. For the three-dimensional body-centred cubic (BCC), face-centred
cubic (FCC) and simple cubic (SC) lattices, the structure functions are

λ[k] =

⎧⎪⎨
⎪⎩

cos k1 cos k2 cos k3 BCC
1
3 (cos k1 cos k2 + cos k1 cos k3 + cos k2 cos k3) FCC
1
3 (cos k1 + cos k2 + cos k3) SC.

(1)

Let an[x] be the probability that a random walk starts at 0 and ends at x after n steps. The
lattice Green function is the generating function

P(x; z) =
∞∑

n=0

an[x]zn = 1

(2π)D

∫ π

−π

· · ·
∫ π

−π

eix·k

1 − zλ[k]
dDk. (2)

Evaluating P(x; z) in one dimension is straightforward, while in two dimensions, it
requires basic knowledge of complete elliptic integrals [4]. In three dimensions, the problem
suddenly becomes difficult, and in the following we restrict our attention to P(0; z) which we
write as P(z). For the three-dimensional BCC lattice, P(1) was computed by W F van Peype,
a student of H A Kramers, in 1938 [8]. For the three-dimensional FCC and SC lattices, P(1)

was computed by G N Watson in 1939 [9], and together these three integrals are known as the
Watson integrals.

For the general three-dimensional case P(z), almost all advances since 1971 were made
by G S Joyce and S Katsura and their co-workers. For surveys, see [4, 10]. Remarkably,
for the three-dimensional BCC, FCC, SC lattices, and also for the three-dimensional diamond
lattice, all results can be written in the form

P(z) = f1(z)(K(f2(z)))
2, (3)

where f1(z) and f2(z) are simple, lattice-dependent algebraic functions of z and K(q) is the
complete elliptic integral of the first kind with modulus q.

2. P (z) in D � 4 dimensions

Few exact results are available for D � 4 LGFs. We will outline the known results. For
the four-dimensional BCC lattice the problem is completely straightforward, since λ[k] is
factorized, as we can see from equation (1), so that

P(z) = 1

(π)4

∫ π

0
· · ·

∫ π

0

dk1 dk2 dk3 dk4

1 − z cos k1 cos k2 cos k3 cos k4

= 1

π4

∞∑
n=0

zn

(∫ π

0
cosn k dk

)4

=
∞∑

n=0

(
1
2

)
n

(
1
2

)
n

(
1
2

)
n

(
1
2

)
n

(1)n(1)n(1)nn!
z2n

= 4F3

(
1

2
,

1

2
,

1

2
,

1

2
; 1, 1, 1; z2

)
=

∞∑
n=0

(
2n

n

)4 ( z

16

)2n

, (4)

1 We use boldface letters to denote vector quantities.
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which clearly readily generalizes to all D. Using the notation θ = z d
dz

allows the underlying
ODE to be written in a surprisingly compact form, and we find that P(z) in equation (4)
satisfies the fourth-order ODE of degree 1:2(

θ4 − 256z
(
θ + 1

2

)4)
P(16z) = 0. (5)

In 1994, Glasser and Guttmann found that the four-dimensional SC LGF P(z) = ∑
n�0 anz

n

satisfies the fourth-order ODE of degree 2:

(θ4 − 4z(2θ + 1)2(5θ2 + 5θ + 2) + 28z2(θ + 1)2(2θ + 1)(2θ + 3))P (z) = 0, (6)

and expressed its solution as a double hypergeometric function [11] and also in terms of
Kampé de Fériet functions. Whilst this was technically a solution, it was not a particularly
transparent or simple solution. In the following section, we give a simpler solution in terms
of finite sums of products of binomial coefficients.

For the hyper-cubic lattice, Bender et al [1] obtained asymptotics for random walks in
arbitrary (nonintegral) dimensionality. In 2001, Joyce and Zucker [2] gave a rapidly convergent
numerical procedure to calculate the Watson integral P(1) for the hypercubic lattice in any
dimension.

3. Calabi–Yau ODEs

The central new idea in this paper that now allows us to compute D � 4 LGFs is the connection
to Calabi–Yau manifolds, which are ubiquitous in modern string theory, via the Picard–Fuchs
equations [5, 6]. Once we know that an ODE has maximal unipotent monodromy (MUM),
then the Frobenius method gives us a constructive way to write a basis of the solutions. If in
addition, the ODE satisfies the Calabi–Yau condition, then we have enough constraints on the
solutions that it is frequently solvable.

3.1. Calabi–Yau manifolds

The Picard–Fuchs equations are a set of linear ODEs in the moduli parameter of the complex
structure on a particular complex manifold Mn of complex dimension n, satisfying certain
additional properties that need not concern us here.

An ODE is the Picard–Fuchs ODE of a Calabi–Yau manifold when it satisfies a certain
Calabi–Yau condition. In the following, we refer to Picard–Fuchs ODEs of Calabi–Yau
manifolds as Calabi–Yau ODEs.

In the presence of branch cuts, the solutions to an ODE acquire phase factors when
transported around a branch cut. These phases are coded in a monodromy matrix M. An order-
n ODE has maximal unipotent monodromy if Mp = 1 only when p is an integral multiple of
n. In the presence of maximal unipotent monodromy, one can use the Frobenius method to
obtain a basis for the solutions. The Calabi–Yau ODEs we consider here have MUM at the
origin, a consequence of which is that all the exponents at the origin are zero.

Consider the fourth-order ODE

y(4) + a3(z)y
(3) + a2(z)y

′′ + a1(z)y
′ + a0(z)y = 0 (7)

with four solutions around the origin, y0, y1, y2, y3. Using the Frobenius method, maximal
unipotent monodromy at the origin implies that

y0 = 1 +
∑
n�1

αnz
n (8)

2 The degree is the maximum power of z that occurs in the differential operator.
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y1 = y0 log z +
∑
n�1

βnz
n (9)

y2 = y0

2
log2 z +

⎛
⎝∑

n�1

βnz
n

⎞
⎠ log z +

∑
n�1

γnz
n

y3 = y0

6
log3 z +

1

2

⎛
⎝∑

n�1

βnz
n

⎞
⎠ log2 z +

⎛
⎝∑

n�1

γnz
n

⎞
⎠ log z +

∑
n�1

δnz
n.

(10)

The condition for equation (7) to be a Picard–Fuchs equation of a Calabi–Yau manifold is

a1 = 1
2a2a3 − 1

8a3
3 + a′

2 − 3
4a3a

′
3 − 1

2a′′
3 , (11)

which puts stringent conditions on the solutions that frequently allow us to determine them
[12].

A list of Calabi–Yau ODEs has been tabulated by Almkvist et al [13]. It contains more
than 300 Calabi–Yau ODEs, many of which were found to have solutions in terms of sums of
products of binomial coefficients.

Anticipating results given below, we remark on the unexpected, and so far unexplained,
observation that almost all known higher dimensional LGF ODEs also appear in the list of
[13]. For example, equation (5) is Calabi–Yau ODE number 3 in [13], while equation (6) of
Glasser and Guttmann is Calabi–Yau ODE number 16, which is given along with its solution.
So, for the LGF generating function coefficient an, we have

an =
(

2n

n

) ∑
j+k+l+m=n

(
n!

j !k!l!m!

)2

=
(

2n

n

) n∑
k=0

(
n

k

)2 (
2k

k

) (
2n − 2k

n − k

)
.

The first equality follows from a result of Glasser and Montaldi [14], who related the hypercubic
LGF to the generating function of the squares of multinomial coefficients, which had been
given earlier by Guttmann and Prellberg [15], but the second equality is new, and gives the
coefficient as a finite sum of products of binomial coefficients.

3.2. Four-dimensional FCC LGF

The four-dimensional FCC LGF has not previously been found. It is defined as

P(z) = 1

(π)4

∫ π

0
· · ·

∫ π

0

dk1 dk2 dk3 dk4

1 − z
6λ[k]

,

where λ[k] = (c1c2 + c1c3 + c1c4 + c2c3 + c2c4 + c3c4), with ci = cos ki. We set
u = 1 − z

6 (c2c3 + c2c4 + c3c4) and v = z
6 (c2 + c3 + c4). Then the integrand is [u − v cos k1]−1.

We use
1

π

∫ π

0

dθ

u − v cos θ
= 1√

u2 − v2
= 1√

(u + v)(u − v)

to eliminate k1.

Next we write (u + v)(u − v) = e(c − cos k2)(d − cos k2), where c, d, e are independent
of k2, and use ∫ π

0

dθ√
(c − cos θ)(d − cos θ)

= 2K(k)√
(c − 1)(d + 1)

to eliminate k2, where k2 = 2(c−d)

(c−1)(d+1)
, and K(k) is the complete elliptic integral of the first

kind. We are left with a two-dimensional integral, which was expanded as a power series in z
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and integrated term by term in Maple. We obtained 40 terms in a few hours and then searched
for, and found, the ODE generating the coefficients. It is

(θ4 − z(39θ4 − 30θ3 − 19θ2 − 4θ) + 2z2(16θ4 − 1070θ3 − 1057θ2 − 676θ − 192)

− 36z3(171θ3 + 566θ2 + 600θ + 316)(3θ + 2)

− 2533z4(384θ4 + 1542θ3 + 2635θ2 + 2173θ + 702)

− 2633z5(1393θ3 + 5571θ2 + 8378θ + 4584)(1 + θ)

− 21035z6(31θ2 + 105θ + 98)(1 + θ)(θ + 2)

− 21237z7(θ + 1)(θ + 2)2(θ + 3))P (z) = 0. (12)

This is a fourth-order, degree 7 Calabi–Yau ODE with regular singular points at 0, 1/24, −1/4,
−1/8, −1/12, −1/18 and ∞. It is not (yet) on the list [13], but turns out to be one of only
three known fourth-order, degree 7 Calabi–Yau ODEs [16].

It is straightforward to obtain the five-dimensional BCC and SC LGF ODEs. The five-
dimensional BCC LGF follows by a straightforward generalization of equation (4), and satisfies
a fifth-order ODE, which can be pulled back3 to a fourth-order ODE. Similarly, the five-
dimensional SC LGF satisfies a fifth-order ODE of degree 3, which can be pulled back to a
fourth-order degree 12 ODE. It is number 188 in [13]. Remarkably, all the above ODEs also
turn out to be Calabi–Yau ODEs! We are yet to obtain the five-dimensional FCC LGF.

3.3. Mirror symmetry

A deep result from modern string theory is that Calabi–Yau manifolds come in pairs
{Xn, Yn} that are mirror symmetric [5–7]. Consider the solutions of equation (7) given by
equations (8)–(10) and define q(z) = exp(y1/y0) = ∑

n�0 tnz
n. If z is the moduli parameter

of the complex structure on Xn, then q is the moduli parameter of the Kähler structure on Yn,
and the inverse function z(q) = ∑

n�0 unq
n is the mirror map. Given a mirror pair {Xn, Yn},

one can compute the Yukawa coupling K(q) of certain fields in the effective field theory limit
of a string theory compactified on Yn. The result is

K(q) =
(

q
d

dq

)2 (
y2

y0

)
= 1 +

∞∑
k=1

k3qk

1 − qk
Nk, (13)

where Nk is the degree-k instanton number, that is, the number of degree k holomorphic maps
from the projective line to Yn. The sum on the right-hand side of equation (13) is the full
string theoretic contribution to the Yukawa coupling. Equation (13) is a major achievement of
modern string theory. It led to great advances in enumerative geometry [6, 7].

From this definition, we can calculate the instanton numbers Nk from the LGF ODEs.
In all cases we find that, up to a small integer multiple, they comprise an integer sequence.
Presumably they count something of combinatorial or probabilistic significance. At this stage,
what this something is remains a completely open, but potentially very interesting, question.

4. Conclusion

We have given explicit forms for the coefficients of the four-dimensional LGFs on the SC and
BCC lattices, in terms of finite sums of products of binomial coefficients, and have shown that
the corresponding FCC LGF satisfies a fourth-order ODE of degree 7, which we have found but
not solved. We have also given the solution, in terms of hypergeometric functions, of the LGF
for the five-dimensional BCC lattice and identified the relevant ODE for the five-dimensional
3 By this, we mean that the solutions can be expressed in terms of the solutions of an ODE of a lower degree.
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SC lattice. Neither calculation is particularly difficult. However what is remarkable is that,
in both cases, a pull-back to a fourth-order ODE can be achieved and that all these LGFs are
solvable in terms of Calabi–Yau ODEs.

It took more than 20 years to find a unifying viewpoint for all three-dimensional LGFs
as products of two elliptic integrals of the first kind. Glasser and Guttmann [11] showed that
the four-dimensional BCC LGF can be expressed as a 1D integral of a product of two elliptic
integrals of the first kind. Glasser [3] has suggested that this result may hold for all four-
dimensional lattices. If so, that would then provide a unifying viewpoint of four-dimensional
LGFs.

The physical meaning of the connection between LGFs and Calabi–Yau ODEs remains
to be explained. The answer will potentially provide insights into both LGFs and Calabi–Yau
ODEs. A related aspect is to use the mirror symmetry of Calabi–Yau manifolds to obtain
deeper information about LGFs and explain the combinatorial significance of the instanton
numbers. The fact that the Picard–Fuchs equations of Calabi–Yau manifolds that appear in this
paper are the same as those that appear in string theory [5, 6] hopefully marks the beginning
of a cross-fertilization between these different topics. On a more general level, we can draw
a parallel with some integrals that arise in the study of the two-dimensional Ising model
susceptibility [17]. There it is argued that the algebraic nature of the integrand give rise to
globally nilpotent Fuchsian ODEs with rational exponents. Similar conclusions should apply
to the LGFs we consider here, from which follows that the solutions are highly specialized
and selected. It remains to link this somewhat vague observation with something more precise
to explain the occurrence of the CY condition for these ODEs.
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